Revues Internationales avec Comité de Lecture
33. Sac-Épée, J.-M.
Small degree Salem numbers with trace -3
Control Cybern. 52, No. 3, 335-346 (2023)
https://doi.org/10.2478/candc-2023-0041
32. Eyraud, E. ; Maurat, E. ; Sac-Épée, J.-M. et al.
Short-range interactions between fibrocytes and CD8+ T cells in COPD bronchial inflammatory response
eLife12:RP85875, 2023
https://doi.org/10.7554/eLife.85875.1
31. Dupin, I. ; Eyraud, E. ; Maurat, E. ; J.-M. Sac-Épée, P. Vallois
Modeling cell interactions driving Chronic Obstructive Pulmonary Disease (COPD) via probabilistic cellular automata
J. Theoret. Biol. 564 (2023), Paper No. 111448
https://doi.org/10.1016/j.jtbi.2023.111448
30. Ounaies, M. ; Sac-Épée, J.M.
On a Family of Holomorphic Self-maps of the Unit Disk
Results Math. 77 (2022), no. 6, Paper No. 226
https://doi.org/10.1007/s00025-022-01759-5
29. El Otmani, S.; Maul, A.; Rhin, G.; Sac-Épée, J.-M.
Finding new limit points of Mahler measure by methods of missing data restoration
BAU Journal – Science and Technology, Vol. 2 (2021), Iss. 2, Article 10
28. Ounaies, M..; Rhin, G..; Sac-Épée, J.-M.
On the relations between the zeros of a polynomial and its Mahler measure
J. Number Theory 224 (2021), 165-190. (pdf)
https://doi.org/10.1016/j.jnt.2021.01.016
27. Mortini, R.; Sac-Épée, J.-M.
Complex inequalities involving sums of holomorphic selfmaps of the unit disk and some experimental conjectures.
Complex Anal. Synerg. 5 (2019), no. 2-4, 5:12.
https://doi.org/10.1007/s40627-019-0037-1
26. Flammang, V.; Sac-Épée, J.-M.
Totally positive polynomials with small length.
Control and Cybernetics, vol. 48 (2019) No. 3
25. El Otmani, S.; Rhin, G.; Sac-Épée, J.-M.
Finding new limit points of Mahler’s measure by genetic algorithms.
Exp. Math. 28 (2019), no. 2, 129-131
24. Chrayteh, H.; El Arwadi, T.; El Kontar, S.; Sac-Épée, J.-M.
About the D-bar reconstruction method for complex conductivities: error estimates.
J. Anal. Appl. 16 (2018), no. 1, 1-40.
23. El Otmani, S.; Maul, A.; Rhin, G.; Sac-Épée, J.-M.
Finding new small degree polynomials with small Mahler measure by genetic algorithms.
Rocky Mountain J. Math. 47 (2017), no. 8, 2619-2626
22 El Arwadi, T.; Flammang, V.; Rhin, G.; Sac-Épée, J.-M.
Extension of the notion of Mahler measure to a certain class of holomorphic functions. Properties and applications.
Results Math. 72 (2017), no. 1-2, 787-791
https://doi.org/10.1007/s00025-017-0718-0
21. Chrayteh, H.; El Arwadi, T.; El Kontar, S.; Sac-Épée, J.-M.
Stability of the D-bar reconstruction method for complex conductivities.
Aust. J. Math. Anal. Appl. 13, No. 1, Article No. 21, 14 p., 2016
20. Ali Ahmad, R.; El Arwadi, T.; Chrayteh, H.; Sac-Épée, J.-M.
A Priori and A Posteriori Error Estimates for a Crank Nicolson Type Scheme of an Elliptic Problem with Dynamical Boundary Conditions.
Journal of Mathematics Research, Vol 8, No 2, April 2016
https://doi.org/10.5539/jmr.v8n2p1
19. Ali Ahmad, R.; El Arwadi, T.; Chrayteh, H.; Sac-Épée, J.-M.
A Crank-Nicolson Scheme for the Dirichlet-to-Neumann Semigroup.
J. Appl. Math. 2015, Art. ID 429641, 5 pp.
https://doi.org/10.1155/2015/429641
18. El Otmani, S ; Rhin, G.; Sac-Épée, J.-M.
A Salem number with degree 34 and trace −3.
J. Number Theory 150 (2015), 21-25.
https://doi.org/10.1016/j.jnt.2014.11.013
17. Cherif, M.A.; El Arwadi, T.; Emamirad, H.; Sac-Épée, J.-M.
Dirichlet-to-Neuman semigroups acts as a magnifying glass.
Semigroup Forum 88 (2014), no. 3, 753-767.
16. El Otmani, S.; Maul, A.; Rhin, G.; Sac-Épée, J.-M.
Finding degree 16 monic irreducible integer polynomials of minimal trace by optimization methods.
Exp. Math. 23 (2014), no. 1, 1-5.
15. El Otmani, S.; Maul, A.; Rhin, G.; Sac-Épée, J.-M.
Integer Linear Programming applied to determining monic hyperbolic irreducible polynomials with integer coefficients and span less than 4.
J. Théor. Nombres Bordeaux 25, (2013) no. 1, 71-78
14. El Otmani, S.; Rhin, G.; Sac-Épée, J.-M.
The EM algorithm applied to determining new limit points of Mahler measures.
Control Cybernet., 39 (2010), no. 4, 1185-1192
13. Belhachmi, Z.; Sac-Épée, J.-M.; Sokolowski, J.; Tahir, S.
Locking-Free Finite Elements for Unilateral Crack Problems in Elasticity.
Math. Model. Nat. Phenom. 4 (2009), no. 1, 1-20 (pdf)
12. Belhachmi, Zakaria; Bucur, Dorin; Sac-Épée, Jean-Marc
Finite element approximation of the Neumann eigenvalue problem in domains with multiple cracks.
IMA J. Numer. Anal. 26 (2006), no. 4, 790–810.
11. Flammang, Valérie; Rhin, Georges; Sac-Épée, Jean-Marc
Integer transfinite diameter and polynomials with small Mahler measure.
Math. Comp. 75 (2006), no. 255, 1527–1540 (electronic).
10. Belhachmi, Zakaria; Bucur, Dorin; Buttazzo, Giuseppe; Sac-Épée, Jean-Marc
Shape optimization problems for eigenvalues of elliptic operators.
ZAMM Z. Angew. Math. Mech. 86 (2006), no. 3, 171–184.
9. Sac-Épée, J.-M.; Taous, K.
On a wide class of nonlinear models for non-Newtonian fluids with mixed boundary conditions in thin domains.
Asymptot. Anal. 44 (2005), no. 1-2, 151–171.
8. Belhachmi, Z.; Sac-Épée, J. M.; Sokolowski, J.
Mixed finite element methods for smooth domain formulation of crack problems.
SIAM J. Numer. Anal. 43 (2005), no. 3, 1295–1320 (electronic).
7. Sac-Épée, J.-M.; Taous, K.
On the behaviour of a diphasic flow with a weak relative viscosity.
AMRX Appl. Math. Res. Express (2004), no. 2, 43–71. (pdf)
6. Belhachmi, Zakaria; Sac-Épée, Jean-Marc; Sokolowski, Jan
Approximation par la méthode des éléments finis de la formulation en domaine régulier de problèmes de fissures. (French) [Finite element approximation of the smooth domain formulation of crack problems]
C. R. Math. Acad. Sci. Paris 338 (2004), no. 6, 499–504.
5. Rhin, G.; Sac-Épée, J.-M.
New methods providing high degree polynomials with small Mahler measure.
Experiment. Math. 12 (2003), no. 4, 457–461.
4. Belhachmi, Z.; Brighi, B.; Sac-Épée, J. M.; Taous, K.
Numerical simulations of free convection about a vertical flat plate embedded in a porous medium.
Comput. Geosci. 7 (2003), no. 2, 137–166.
3. Sac-Épée, J.-M.; Saint Jean Paulin, J.
Study of a vibration problem for a perforated plate with Fourier boundary conditions.
Partial differential equations on multistructures (Luminy, 1999), 193–206, Lecture Notes in Pure and Appl. Math., 219, Dekker, New York, 2001.
2. Sac-Épée, J. M.; Saint Jean Paulin, J.
Evolution of a thin reticulated elastic structure.
Trends in applications of mathematics to mechanics (Lisbon, 1994), 278–289, Pitman Monogr. Surveys Pure Appl. Math., 77, Longman, Harlow, 1995.
1. El Otmani, S.; Sac-Épée, J.-M.; Saint Jean Paulin, J.
Study of a perforated thin plate according to the relative sizes of its different parameters.
Math. Methods Appl. Sci. 18 (1995), no. 7, 571–589.